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ABSTRACT 

We discuss  and  prove three  space propert ies  and  basis  ex tens ion  theo rems  

of t he  following kind: 

Let  Y be  a separable  L l - space  and  X C Y a non-reflexive subspace  such  

t h a t  Y / X  has  a basis.  T h e n  X has  a basis.  

If Y is a separable  C ( K ) - s p a c e  and  X C Y is such t h a t  Y / X  is non-  

reflexive, t h e n  every basis  of  X can be  ex tended  to a basis  of  Y. 

1. I n t r o d u c t i o n  

Let Y be a separable (real or complex) Banach space and X C Y a closed 

subspace. We discuss the following question: 

If two of the three Banach spaces Y, X and Y/X have bases, does it follow 

that  the third one has a basis, too? 

The answer to all variants of this question is no in general. For example, there 

exists a separable Banach space Y without basis which contains an isomorphic 

copy of co, [2]. It was shown in [6] that there is a subspace X C Y with basis 

where Y/X has a basis, too. 

Moreover, there is a separable Banach space W without basis which is com- 

plemented in a space with basis (Le. has the bounded approximation property), 

[10], [8]. Then, by [6], there is a Banach space V with basis such that  Y = W@V 
has a basis. S(I, if we put  X = V then Y and X have bases but  Y/X fails to have 
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a basis. Finally, if X -- W, then Y and Y / X  have bases but X does not possess 

a basis. 

Closely related to three space problems is the following basis extension problem: 

Let X, Y be Banach spaces with bases, such that X C Y, and assume that 

~ x  is a basis of X. Is there a basis ft of Y containing f~x as a subsequence? 

The answer again is no in general since a positive answer would imply that  

Y / X  always has a basis, too. 

The aim of this paper is to give some positive answers to the preceding 

questions if Y is a s or a El-space. 

For two isomorphic Banach spaces U, V let d(U, V) be the Banach-Mazur 

distance, i.e. 

d(U, V) = inf{llTII. IIT-11I: T: U ~ V is an (onto-) isomorphism}. 

Let 1 < p < co. Y is called a/:p-space if there is A > 0 such that, for each finite 

dimensional subspace E C Y, there exists another finite dimensional subspace 
F C Y with E C F and d(F, dimF lp ) <IX. 

It is well-known that separable s have bases, [3]. 

THEOREM: 

(a) Let Y be a separable s and X C Y a dosed subspace. Assume that 

{ x j } ~= 1 is a basis of X and {yj}j~176 1 is a basis of Y.  Then Y ~ co has a basis 
Z o o  {Zk}~~ containing {xj}~= 1 as a subsequence. Furthermore, { k}k=l has 

another subsequence which is equivalent to {YJ}~I. (Here Y is identified 

with the left-hand summand of Y @ co.) 

(b) Let Y be a separable s and assume that {wj}~= 1 is a basis of Y / X  

for some subspace X C Y.  Then there is a basis {zk}k~176 o f Y  @ 11 and a 

subsequence A = {kj}~~ of the indices such that 

q Z k = { o  j i f k = k j ,  
i l k  r A. 

Here q: Y @ ll -+ Y / X  is the map with q(y + l) = y + X ,  y E Y,  l E 11. 

Note that  the basic sequence (xj}~~ in Theorem (a) is a subsequence of 

{zk}k~176 , not just equivalent to a subsequence. 

We prove the theorem in Sections 2 and 3. The proof of the theorem shows 

that  the basis constant for the basis in Y (9 co (or Y @ 11) depends only on the 

basis constant of the given basis in X (or Y / X ,  resp.) and the basis constant of 

the space Y. 
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Here we discuss some corollaries and examples. As an immediate consequence 

of the theorem we obtain 

COROLLARY ] : 

(a) Let Y be a separable s and assume that the subspace X C Y has 

a basis. Then (Y /X)  | Co has a basis. 

(b) Let Y be a separable El-space and assume that Y / X  has a basis for some 

subspace X C Y. Then X @ ll has a basis. 

Let Y be a separable C(K)-spaee and X C Y such that Y / X  is non-reflexive. 

Assume that  q: Y -~ Y / X  is the quotient map. It is welt known, [1], that  there is 

a subspace U C Y, U ~ Co, where qlu is an isomorphism. So, U is complemented 

in Y and qU is complemented in Y / X .  

Furthermore, if Y is a separable Ll-space, then every non-reflexive subspac e 

X C Y contains a complemented copy of 11, [4]. 

Hence we obtain a slight extension of the theorem for C(K)- and Ll-spaces: 

COROLLARY 2: 
y oo (a) Let Y be a separable C(K)-space and let { j}i=l  be a basis of Y. Assume 

X c Y is such that Y / X  is non-reflexive. Then every basis of X can be 

extended to a basis of Y containing another subsequence which is equivalent 

to {yJ}j%l. 
(b) Let Y be a separable Ll-space and let X C Y be a non-reflexive subspace. 

If f~o is a basis of Y / X  then there is a basis f~ of Y such that q(f~) = f~o 

where q: Y --+ Y / X  is the quotient map. 

COROLLARY 3: 

(a) Let Y be a separable C(K)-space and X C Y a subspace with basis such 

that Y / X  is non-reflexive. Then Y / X  has a basis. 

(b) Let Y be a separable Ll-space and X c Y a non-reflexive subspace such 

that Y / X  has a basis. Then X has a basis. 

Examples: (1) Any closed subspace X C ll is non-reflexive or finite-dimensional. 

So, if l l / X  has a basis, then X must have a basis. Recall that  every separable 

Banach space is a quotient of 11. 

(2) Let T = {z �9 C: Iz[ = 1}. Recall that every separable Banach space can 

be isomorphically embedded into C(T). If X C C(T) is such that  C(T) /X  is 

non-reflexive and X has a basis, then any basis of X can be extended to a basis 

fl of C(T). It is known that  C(T) has a basis fl0 such that  every basic sequence of 
b 

any separable Banach space is equivalent to a subsequence of ~0 ([7]). So, using 
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Corollary 2 we can even arrange ~ such that  in addition any basic sequence is 

equivalent to a subsequence of ~. This is true, in particular, if X = A is the 

disc-algebra. 

(3) Let A C Z and let 

CA = closed span of {z": n �9 A} C C(~'). 

It  is unknown if CA has a basis for every A c Z. 

However, if CA has a basis then so does C('IF)/CA provided that  C(T)/CA is 

non-reflexive. 

2. T h e  m a i n  construct ion  

At first we present the main construction and then we prove part  (a) of the 

theorem. Let Y be a separable/:oo-space, X C Y a closed subspace, {xj}j~=l a 

basis of X with basis projections Tj: X ~ X .  Put  To = 0. Finally, let R,~: Y ~ Y 

be the sequence of basis projections for a given basis of Y. By counting the Tj 

several times if necessary (i.e. T1 -- T2 . . . . .  Tjl , Tjl+I . . . . .  Tj2 , etc.) we 

may assume w.l.o.g. 

(2.1) I I ( i d -  Rn-1)(T~ - Tn-1)ll _< 2-'* for all n. 

Put  R0 -- 0. Since Y is a separable Coo-space we find subspaces E1 C E2 C .-.  

satisfying 

(2.2) R,~Y U T n X  C En, U E n  --- Y and supZf~  ldimE'~ 
n 

Let Z be the completion of the space of all finite sequences {ek}k~176 where 

e k e  Z k ,  under the norm 

(2.3) II{ek }k%1 II --- sup II ek II. 
n k----1 

Identify y E Y with { ( / ~  - R,~_l)y},~~176 1 in Z. Let 

(2.4) P{ek}~=l = { ( R n  - a n - l )  E ek}~n=l" 
k 

Then P:  Z --+ Y is a bounded projection. Finally, put 

(2.5) ) (  = {{(Tk - Ta-t)x}~=l e Z: x �9 X} .  

Then ) (  is isomorphic to X.  
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2.1. LEMMA: ker P is spanned by the elements 

(2.6) e ( n ) : = ( O , . . . , O , e , - e , O , . . . ) ,  e e E , ~ ,  n = l , 2 , . . . .  

n--1  

So, ker P = ( ~  GEn)(o) "~ Co, Z ~ Y @ co and P corresponds to the canonical 

projection Y @ co -+ Y.  

Proof: (2.3) and (2.6) yield, for e k e  Ek, [[ E k  ek(k)ll = sup,  IlenH. Clearly, 

ek(k) E ker P for all k. Moreover, the elements ek(k), k = 1, 2 , . . . ,  span ( i d - P ) Z .  

Indeed, consider e E En and 

z = (0, . . .  ,0, e ,0, . . . ) .  
n--1 

Put,  for m = 1 , 2 , . . . ,  

Z m = - -  

Then, by (2.4), 

n A - m - - 1  

E (n el(k) + (0 , . . . , 0 , e ,0 , . . .  , 0 , - e ,0 , . . . ) .  
k = l  n - 1  m - - 1  

(id - P)z  - zm = 

( 0 , . . . ,  0, e - P~+me, - (R~+m+l  - R,~+m)e,-(R,~+m+2 - Rn+m+l)e,. . .) .  

n + m - - 1  

Since limk~or Rke = e we conclude, using (2.3), limm-+oo II(id - P)z  - z,,~[I = O. 

This implies that  ker P is the closed linear span of the elements ek(k), ek E Ek, 

k = 1, 2 , . . . .  Hence 

2.2. LEMMA: 

with 

Z = P Z @ k e r P ~ . . Y @ ( E @ E k ) ( o  ) ~Y@CO. | 

There is a bounded projection/5 from Z onto a subspace Y C Z 

(2.7) 

Proof." 

k e r P = k e r / 5  and / S X = X .  

Let p: Z ~ Z/ f~  be the quotient map and put 

e c~ Q({ k } k = l + X )  ~ e k + X .  
k 
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Then, in view of (2.5), Q is a well defined contractive map from Z / X  to Y / X .  

(It is easily seen that Q is even a quotient map.) 

We determine kerQ. To this end let Q({ek}k~=l + X )  = X ,  i.e. 

( 2 s )  x = c x .  

k 

Put  fn = el + ' "  + en - Tax. Then f,~ C En and, by (2.6), 

n 

Es (k): 
k----1 

(el -- (T1 - T o ) x ,  e2 - (T2 - T 1 ) x , . . .  ,en - (Tn - T n - 1 ) x , - f n , O , . . . ) .  

Hence 
n+m 

]l{ek}k~176 - -  f k (k)  + 2]] _< sup I ] E  ek -- Tn+~x]l, 
k=l rn k----1 

e oo  n ]g i.e., in view of (2.8), lim,~ }1{ k}k=l - - ~ k = l  fk( ) +)(11 0. Clearly, fk(k) + 2  �9 

ker Q for all k. This proves that  ker Q is spanned by the elements of the form 
n k g,~(n) + 2 ,  gn �9 En.  We obtain [[ ~ k = l g k (  ) + 2 [ [  < supk [[gkl[ and 

1 
I] E gk(k) + 211 > - inf(sup I]gk + Tkxll + sup HT,~+,nx][) 

k=l -- 2 x k<_n m 

1 sup Ilgkll 
> 2c k< .  

since TkT,~+m = Tk if k _< n. Here c = sup, n [[Tm[[. This shows that kerQ ~ co. 

Moreover, using (2.3) and (2.6) we see that Piker P is an isomorphism onto ker Q. 

Since ker Q ~ co we find a bounded projection S: Z / f (  --4 ker Q. Put  

t5 = id - (P[kerP)-lsp. 

Then/5 :  Z -+ Z is a bounded projection and we obtain 

k e r P  = ( P l k e r e ) - l S p Z  ~-- kerP. 

Finally we claim f i x  = 2 .  At first we observe P [ ?  -- id. If x �9 X then 
x oo Qp{(Rn  - Rn-1) }k=l = 0. Hence we have 

s p { ( P ~  - P ~ - , ) x } F = l  = p{(P~ - n ~ - l ) x } ~ = l  

: p ( { ( n n  - Rn-1)x}n~176 1 - {(Tn - Tn-1)x}~176 
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(2.4) implies 

w := {(Rn - Rn-1)x}~= 1 - {(Tn - Tn-1)X}~n_~l �9 kerP. 

Thus 

P { ( R n  - Pvn--1)X}n~176 1 ~--- { ( R n  - R n - 1 ) x } ~ =  1 - w = { ( T  n - T n _ l ) X } n ~ 1 7 6  

This implies/SX = X. | 

2.3. COROLLARY: Put  Y = P Y .  Then [a[y is an isomorphism between Y and 

17 where (/51y)-1 = P[? .  In particular Z ~ Y @ Co and f~ C Y corresponds to 

the given embedding X C Y .  

Let m .  -- ~ k = l  dim Ek and put, if ek E Ek, 

(2.9) P~{ek}~=~ = ( e l , . . .  , e ~ , 0 , . . . ) .  

p ,  O O  Clearly, ( m~}n=l is an FDD-sequence, i.e. P, nkPmj = P T / ~ m l n ( j , k  ) for all j ,  k and 

limn-~oo Pm, z -- z for all z E Z. 

Let (yj}j~176 1 be the basis of Y corresponding to the given basis projections Rj. 

Regard yj as elements of Z. Recall, {Xj} j~176 1 is  the basis of X corresponding to the 
. �9 , O O  ]r - -  , �9 �9 �9 

projections Tk, 1.e. Tjk ~i=1 aixi  = ~i=1 aixi  for statable mdmes Yk. Remember 

that  we assumed Tjk = Tjk+l . . . . .  Tjk+,_l. 

Z oo 2.4. LEMMA: Let 5cj E X correspond to xj E X .  Then there is a basis { k}k=l 

of Z which contains {fcj}~= 1 and {YJ}~=I as subsequences. Moreover, if  Pk are 
the basis projections of {Zk}k~__x then Pm. coincides with the projection in (2.9). 

Proof: We retain the notation of jk preceding Lemma 2.4. By (2.5) we obtain 

2k = (0 , . . .  ,O, xk,O, . . . ) .  

j k - -1  

-[e - lk~ In view of (2.2) we find a basis t n,3Jj=l of E,~ whose basis constant does not 

depend on n such that  e~,l = y~ and, in the case that n = j~, en,2 -~ xk. Note 

that,  in view of (2.1), (2.2), we can write 

j" /~n@ span{yn}@ span{xk}, i f n = j k  for somek E~ / /~n @ span {Yn}, else 

for some suitable one- or two-codimensional subspace/~n of En. 



24 W. LUSKY Isr. J. Math. 

n-1 We have m~_l = ~-~j=l kj. Put 

z~_~+j = ( ~ ,  e~,j, 0,...). 

rt--1 

k Oo According to (2.3) we obtain a basis of Z which contains {xJ}~=l and {y }k----1 
as subsequences. The basis projections clearly satisfy (2.9). | 

Corollary 2.3 and Lemma 2.4 prove part (a) of the theorem. The basis con- 

stant of {Zk}k~=l depends only on sup~ [IR~[J and sup~ []Tnl[. Virtually the same 

construction can be used to show that the theorem and the corollaries remain 

true if we replace 'basis' by 'FDD' or other bounded approximation properties. 
We need another lemma to prove part (b) of the theorem. Let z~r be the 

biorthogonal functionals of the zk. We retain the notation of the basis {xj }~=1 

of X. Denote the corresponding basis in )(  by {xJ}~=l (i.e. 2j = / b x j )  and let 2~ 

be the biorthogonal functionals of the ~i. Again, let m~ be the indices of (2.9). 

2.5. LEMMA: Let Pm be the basis projections of the basis {zm}~=l of Lemma 
f ~o 2.4. Put U = norm closure o (Um=l P ' Z * ) .  Then U ~ ll. Moreover, let vj E Z* 

be given elements such that vii 2 E span{&~: k = 1, 2 , . . .}  for all j .  Then there 

n is a subsequence { k}k=l of the indices satisfying 

(2.10) vjlf: = (P~,..jvj)12 , j -- 1,2 , . . . .  

Proos For e* E E* put 

n 

(e*)~((ek}k%,) = e * ( ~  ek). 
k=l 

Let U --- normed closed span of {(e*)n: e* C E*, n = 1, 2, . . .}.  We have, by (2.9), 

(e*)k if k < n, 
P~,(e*)k= ( I~,)ne* i f k > ~ .  

Hence R* U C U. Moreover, by definition of Pro,, P-* Z* C U. So, norm m,~ mn 
OO ~ $ closure of [Jm=l Pm Z* = U. For e,~ e E ~  we obtain, by (2.6), 

e �9 I 1 ~ (  m)ralkerPII = sup I Z e * ( e m )  I 

= sup{I ~ G ( ~ ) l :  ~ e Era, IJe~ll _< 1 for all ~} 

m 
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This proves that  the restriction map r: Z* ~ (kerP)* maps U isomorphically 

onto (ker P)* ~ ll. Hence U .- ll. 

Now, let vj C Z* be such that  vii 2 C span{ff:~: k = 1 ,2 , . . .} .  This means by 

(2.5) that  

vj(~,k) = 0 if k > nj for suitable nj.  

Since the Pm are the basis projections for {z,~}~= 1 and this basis contains 

{~k}~~ as a subsequence, we obtain 

vj(x.k) = (P* jv j ) (~k)  for all k. 

This implies (2.10). | 

3. Proof  of  Theorem (b) 

We want to retain the notation of Section 2, so we change the notation of 

Theorem (b). Let V be a separable s Then V always has a basis ([3]), say 

{vj}~= 1. Let W C V be a closed subspace such that V / W  has a basis {wj}~= 1. 

We can arrange the vj such that  

(3.1) vj + W E span{wk: k -- 1, 2 , . . . )  for all j. 

Denote by v~ and w~ the corresponding biorthogonal functionals. Put  

(3.2) 

Then 

* o o  X = normed closed span of {wk}k= 1. 

x c ( y / w ) *  = w ;  c v*.  

$ O 0  $ Let T~ be the basis projections for the basis {wk}k= 1 of X. Put  xk -= w k and 

obtain x~ = wk. We want to apply the main construction of Section 2 to X and 

the Tk. Therefore we need Y. At first, observe that  V* is a s ([5]). Let 

Y c V* be a separable/:oo-space containing X and {V~}k~176  . 

Let Z, U, z~, Pk, X,  2~, P , / 5  be defined as in Section 2 and let r: Z* --+ )(* 

be the restriction map. Lemmas 2.4 and 2.5 imply U ~ 11 and 

2; if k = kj 
(3.3) ? '(z;)  

0 i f k f f A  

* Oo  for a suitable subsequence A = {kj}~= 1. Moreover, {Zk}k= 1 is a basis of U. 

(3.2) and (3.3) yield r(U) ~ V / W .  Every y E Y C V* is a functional on V. For 

z E Z we have P z  E Y and P z  = P/hz (Corollary 2.3). Put  

(3.4) ~j(z) = (Pz) (v j ) ,  j = 1,2, . . . .  
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Then ~j E Z* and ~j(f)z) = (Pz)(vj)  for all z E Z. Clearly, 

:= normed closed span of {~j : j = 1, 2 , . . .}  ~ V. 

In view of (3.1) and (3.4) we obtain that 

vii2 E span{~:~ : k -- 1, 2 , . . .}  for all j. 

Lemma 2.5 applied to ~j instead of vj yields indices nj satisfying (2.10). Put  

uj = P * ~ j .  Then we consider V @ U ~ V @ U. Using (2.10) we conclude that  

(0, Z~), . . . ,  (0, Z** 1 ), (?~1,--Ul), (0, Z~n,~ 1 +1) , ' ' ' ,  (0, Zm,~2), (?~2, --U2), (0, Z*n2+l), 

is a basis of V @ U. This follows from the fact that {~j}~=l is a basic sequence 

in Z* and the Pm~j are basis projections for the basic sequence {z~)~~ In 

particular we have, for all ak, 

k:>j k>_j 

If we put  r(~, u) = r~ + ru, ~ E r~, u E U, then we have 

(3.5) r ( ~ ; , - ~ )  = 0. 

This is a consequence of (2.10). Finally, since U ,,, 11, we find a bounded linear 

operator T: U -~ 1) with rTu  = uiR for all u E U. Put  

0 = { ( - T u ,  u): u E U}. 

Then V @ 0  = I ) @ U ~  V ~ l l .  We h a v e r ( - T u ,  u) = O f o r  a l l u  E U. This 

together with (3.3) and (3.5) proves Theorem (b). | 
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